Presentation Outline

- **SMART, FUNCTIONAL, AND PROTECTIVE COATINGS**
 - History of Coatings
 - Definitions

- **WHAT CAN THEY DO?**
 - Current status
 - Examples

- **HOW DO THEY DO IT?**
 - Mechanisms
 - Examples

- **UV CURABLES TODAY**

- **WHAT DOES THE FUTURE HOLD?**
History of Coatings

PAINT
- Pigments & paint grinding equipment in South Africa (~350-400,000 years ago)
- Cave paintings in Southern France (30,000 years ago)
- Colored walls in Egypt (2,000 years ago)
- Painted ceilings in Ardea, an ancient Roman town
History of Coatings

- **Ancient Egypt (3,000 BC):** waterproofing for boats with pitch/balsam
- **China (1,200 BC):** coffin lacquers from tree sap
- **1754:** Devoe Paint (1st US paint brand)
- **1850:** internal can lacquer
- **1935:** first beer can
Definitions

- **PAINT**
 - Provides decorative or aesthetic properties

- **COATING**
 - Defined by its protective, rather than aesthetic properties, although it can provide both

- **SMART COATING**
 - Provides protective properties, and is capable of actively responding to its environment in a functional and predictable manner
 - May be permanent or reversible change
Smart/Functional Coatings: What Can They Do?

- MODIFY OPTICAL PROPERTIES
 - Anti-reflective
 - High reflection
 - Selective reflection
Smart/Functional Coatings: What Can They Do?

- **SENSE ENVIRONMENTAL CHANGES**
 - Electrochromic
 - Thermochromic
 - Color shifting
 - pH sensing
 - Oxygen sensing
 - Pressure sensing
Smart/Functional Coatings: What Can They Do?

- MODIFY ELECTROMAGNETIC PROPERTIES
 - Conductive
 - Insulative
 - Radio frequency sensor
 - Stealth coatings
Smart/Functional Coatings: What Can They Do?

- CLEAN/PROTECT THEMSELVES
 - Self cleaning
 - Easy to clean
 - Anti-fingerprint
 - Anti-graffiti
 (stain resistant)
Smart/Functional Coatings: What Can They Do?

- CLEAN/PROTECT THEMSELVES
 - Anti-microbial
 - Anti-inflammatory
 - Fire retardant/resistant

Harvard University
Smart/Functional Coatings: What Can They Do?

- **CLEAN/PROTECT THEMSELVES**
 - Ice prevention
 - Ice shedding
Smart/Functional Coatings: What Can They Do?

- **CLEAN/PROTECT THEMSELVES**
 - Fog prevention
 - Self healing

Samadzadeh, et.al.; *Progress in Organic Coatings*
Smart/Functional Coatings: What Can They Do?

- **DESTROY THEMSELVES**
 - Self erasing inks
 - Self destructing coatings
 - Peelable coatings

Images and logos from Northwestern University, AkzoNobel, and Nova Vision.
Smart/Functional Coatings: What Can They Do?

• PROVIDE MULTIPLE FUNCTIONALITIES IN A SINGLE COATING
 – Substrate adhesion
 – Corrosion protection
 – Color
 – Surface functionality/activity

 – Saves time and money
 – Intercoat adhesion no longer an issue
Smart/Functional Coatings: How Do They Do It?

- **CONTROL**
 - Coating composition on molecular level and/or
 - Coating morphology at nanometer scale

- **SOLUTIONS OBTAINED FROM**
 - Additives
 - Polymers
 - Coating systems

- **BIOMEMETICS OR BIOMIMICRY**
 - Structured surfaces

Min, et.al; *Advanced Materials*
Smart/Functional Coatings: How Do They Do It?

• **RESPOND TO**
 – pH
 – Ionic strength
 – Temperature
 – Pressure
 – Surface tension
 – Electrical or magnetic fields
 – Light
 – Acoustics
 – Mechanical forces

• **RESULTING IN**
 – Acid-base reactions
 – Complexation
 – Bond formation/breakage
 – Electrochemical reactions
 – Photochemical reactions

Kartsonakis, et.al., *Corrosion Science*
Smart/Functional Coatings: How Do They Do It?

- REVERSIBLE CHANGES (SWITCHES)
 - Protonation/deprotonation
 - UV induced isomerization, rearrangement, dissociation
 - Redox reactions
 - Temperature induced ring openings
Smart/Functional Coatings: How Do They Do It?

- **SELF STRATIFYING**
 - Two, three, or more coatings from one coating application
 - Incompatible polymers, solvents, kinetics
 - Surface tension gradients
 - Pigment treatment
 - Solventborne, waterborne, and UV coatings

Diagram:

Verkholantsev; *Pigment & Resin Technology*
Smart/Functional Coatings: How Do They Do It?

- SELF HEALING VIA CLICK POLYMERIZATION

Wei, et.al.; Scientific Reports
• **SELF HEALING VIA ENCAPSULATION**
 – Advancing crack breaks capsule (temperature, humidity, UV exposure, osmotic pressure)
 – Corrosion inhibitors
 – Reactive components (A + B)

• **SELF HEALING VIA THERMOPLASTIC POLYMERS**
 – Low surface tension
 – Moves to surface over time, and fills cracks

• **SELF HEALING VIA VOLUME EXPANSION**
 – Clays
 – Polymers must be hydrophilic and have Tm
 – Moist heat needed to heal
Smart/Functional Coatings: How Do They Do It?

- **SELF HEALING VIA UV EXPOSURE**
 - Coating composition: chitosan, oxetane, PU polymer
 - Heals in 30 minutes

IR and Optical Images

Marek Urban, *Science*
Smart/Functional Coatings: How Do They Do It?

- **SELF ASSEMBLY: LAYER BY LAYER (LBL)**
 - Superhydrophobic Coatings

Lin, et.al.; *Langmuir*
Smart/Functional Coatings: How Do They Do It?

• **SELF ASSEMBLY**
 – Polymer brushes plus fibronectin
 – Titanium implants with improved adhesion to bone

Georgia Institute of Technology
- SELF CLEANING VIA SELF ASSEMBLY

Naphthalene diimide core with two guanidinocarbonyl pyrrole “arms” can form highly ordered self-assembled microarrays with solvent dependent morphologies.
Smart/Functional Coatings: How Do They Do It?

- **SELF ASSEMBLY**
 - Structured coatings

[Diagram of self-assembly process]

Silicate or organosilicate patterns generated by self-assembly using ionic surfactants or block copolymers

Baer, et.al.; Progress in Organic Coatings

*Ro and Soles, *Materials Today*
Smart/Functional Coatings: How Do They Do It?

- **ANTI-MICROBIALS**
 - Resist bacterial attachment
 - Kill bacteria on contact
 - Release biocides to kill bacteria
 - Additives or polymer modification
 - Ag, alkyl ammonium salts, N-haloamines, TiO$_2$

APPLICATIONS
- Biomedical devices
- Filters
- Paints
- Coatings
- Textiles
Smart/Functional Coatings: UV Curables Today

• APPLICATIONS
 – Optical
 – Photochromic
 – Self-cleaning/anti-graffiti
 – Conductive
 – RFI
 – Anti-microbial
 – Fire retardant
 – Anti-icing
 – Anti-fog
 – Others

Anti-Glare Coating; Peerless
Smart/Functional Coatings: UV Curables Today

- **EASY TO CLEAN PRODUCTS**
 - Two offerings from Cytec
 - (PRODUCT A >60% and PRODUCT B 25% incorporation levels)
 - Easy fingerprint removal without smudging
 - Oil and water repellant
 - Anti-graffiti (excellent chemical and stain resistance)
 - Excellent surface hardness (resists mechanical wear)
 - Outstanding slide angle

- **Targeted Applications**
 - Consumer Electronics (casing & display)
 - Optical Film
 - Display Partitions & Color Resist
 - High Gloss & Metallic Finishes
 - Luxury Packaging
UV Curables Today: Easy to Clean

- SOLVENT BASED MARKER TEST

Uncoated (control sample) Coated with PRODUCT A Coated with PRODUCT A (after dry wipe)
DURABLE PERFORMANCE; LONG LASTING EFFECT

<table>
<thead>
<tr>
<th>Percent PRODUCT A</th>
<th>Average # of wipes to remove fingerprint</th>
<th>Average # of wipes after 200 Steel wool (0000) rubs, 1kg</th>
<th>Average # of wipes after 100 MEK rubs, 1kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>90</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>70</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Surface cleaned with dry wipes

Substrate = PC
Coating dry thickness = 12 microns
UV Curables Today: Easy to Clean

ROBUSTNESS OF E2C PROPERTY & BENCHMARKING

PRODUCT B provides unique superior & long lasting E2C performance when compared to competitive products.

<table>
<thead>
<tr>
<th>Property</th>
<th>E2C formulation 25% PRODUCT B</th>
<th>COMP1 UV additive based coating</th>
<th>COMP2</th>
<th>COMP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of dry wipes to remove fingerprint</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Pencil Hardness</td>
<td>3H</td>
<td>2H</td>
<td>3H</td>
<td>3H</td>
</tr>
<tr>
<td>Permanent marker resistance (dry wipes)</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Poor</td>
</tr>
<tr>
<td>Steel wool scratch resistance, 200 rubs, 1kg load</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Permanent marker Resistance after 200 steel wool rubs, 1kg</td>
<td>Excellent</td>
<td>Poor</td>
<td>Excellent</td>
<td>Poor</td>
</tr>
<tr>
<td>Smearing during wipe</td>
<td>slight</td>
<td>moderate</td>
<td>moderate</td>
<td>slight</td>
</tr>
<tr>
<td>Smearing during cleaning after 200 steel rubs, 1kg load</td>
<td>slight</td>
<td>severe</td>
<td>moderate to severe</td>
<td>severe</td>
</tr>
</tbody>
</table>
Smart/Functional Coatings: Future

• WHAT
 – Microelectronics with no moving parts
 – Coatings with very long lifetimes
 – Replacement of mechanical sensors
 – On-demand control of functionality

• APPLICATIONS
 – Medical fields
 – Military applications
 – IT technologies
 – Aerospace
 – Food & Packaging
 – Agriculture
 – Automotive
 – Architectural
 – Industrial
 – Household
 – Cosmetics & Personal Care
 – Apparel
Contact Information

Jo Ann Arceneaux
Cytec Industries Inc.
1950 Lake Park Dr.
Smyrna, GA 30080

678-255-4740
joann.arceneaux@cytec.com

Disclaimer: Cytec Industries Inc. in its own name and on behalf of its affiliated companies (collectively, “Cytec”) decline any liability with respect to the use made by anyone of the information contained herein. The information contained herein represents Cytec’s best knowledge thereon without constituting any express or implied guarantee or warranty of any kind (including, but not limited to, regarding the accuracy, the completeness or relevance of the data set out herein). Nothing contained herein shall be construed as conferring any license or right under any patent or other intellectual property rights of Cytec or of any third party. The information relating to the products is given for information purposes only. No guarantee or warranty is provided that the product and/or information is adapted for any specific use, performance or result and that product and/or information do not infringe any Cytec and/or third party intellectual property rights. The user should perform its own tests to determine the suitability for a particular purpose. The final choice of use of a product and/or information as well as the investigation of any possible violation of intellectual property rights of Cytec and/or third parties remains the sole responsibility of the user.

©2012 Cytec Industries Inc. All Rights Reserved.